Block Operators and Spectral Discretizations
نویسندگان
چکیده
Every student of numerical linear algebra is familiar with block matrices and vectors. The same ideas can be applied to the continuous analogues of operators, functions, and functionals. It is shown here how the explicit consideration of block structures at the continuous level can be a useful tool. In particular, block operator diagrams lead to templates for spectral discretization of differential and integral equation boundary-value problems in one space dimension by the rectangular differentiation, identity, and integration matrices introduced recently by Driscoll and Hale. The templates are so simple that we are able to present them as executable MATLAB codes just a few lines long, developing ideas through a sequence of 12 increasingly advanced examples. The notion of the rectangular shape of a linear operator is made mathematically precise by the theory of Fredholm operators and their indices, and the block operator formulations apply to nonlinear problems too. We propose the convention of representing nonlinear blocks as shaded. At each step of a Newton iteration for a nonlinear problem, the structure is linearized and the blocks become unshaded, representing Fréchet derivative operators, square or rectangular.
منابع مشابه
Stable and Accurate Interpolation Operators for High-Order Multi-Block Finite-Difference Methods
Block-to-block interface interpolation operators are constructed for several common high-order finite difference discretizations. In contrast to conventional interpolation operators, these new interpolation operators maintain the strict stability, accuracy and conservation of the base scheme even when nonconforming grids or dissimilar operators are used in adjoining blocks. The stability proper...
متن کاملA Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
متن کاملMultidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements
Summation-by-parts (SBP) finite-difference discretizations share many attractive properties with Galerkin finite-element methods (FEMs), including time stability and superconvergent functionals; however, unlike FEMs, SBP operators are not completely determined by a basis, so the potential exists to tailor SBP operators to meet different objectives. To date, application of highorder SBP discreti...
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
Eigenfunction expansion in the singular case for q-Sturm-Liouville operators
In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Review
دوره 59 شماره
صفحات -
تاریخ انتشار 2017